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Abstract

In this paper we give a polynomial time regocnition algorithm for

balanced 0, ± matrices. This algorithm is based on a decomposition

theorem proved in a companion paper.
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1 Introduction

In [2], Conforti, Cornu~jols and Rao prove a decomposition theorem for bal-
anced 0, 1 matrices and they use it to obtain a polynomial time recognition
algorithm of these matrices. In this paper, using a similar approach, we give
a polynomial time recognition algorithm for balanced 0, ±1 matrices, using a
decomposition result derived in the companion paper (1]. In this paper, as in
[1], we work on the signed bipartite graph representation of a 0, ±1 matrix.
All relevant notation can be found in [1].

The decomposition theorem [1] uses two types of edge cutsets, namely
2-joins and 6-joins, and a certain kind of node cutset. When we remove
the edges (nodes) of a cutset in a signed bipartite graph G, it is not true
in general that, if the resulting connected components are balanced, then G
is balanced. However we may be able to achieve this property by adding
a few nodes and edges to the connected components. In Section 2 we give
such a construction for the 2-joins and 6-joins. The situation for the node
cutset is more complicated and is dealt with in Section 3. In Section 4 we
give a polynomial time algorithm for identifying a 6-join and in Section 5 for
identifying a 2-join. In Section 6 we put all the pieces together and give a
polynomial algorithm for recognizing if a signed bipartite graph is balanced.

2 Edge Decompositions

Throughout this paper, we assume that G be a signed bipartite graph. The
sides of the bipartition are VC and V" with m = IVrI and n = iVcj. The
length of a path P is the number of its edges and its weight w(P) is the sum
of its edge weights. Similarily we distinguish between the length and weight
of a cycle. If the weight of a cycle is 0 mod 4, we say that the cycle is quad,
otherwise it is unquad. By scaling G at node u, we mean changing the sign
of the weights on all the edges incident with u.

Remark 2.1 Let G' be a signed bipartite graph obtained from G by scaling
at node u. A cycle C is quad in G' if and only if it is quad in G.

G is restricted balanced if all its cycles are quad. We have the following
version of Theorem 5.1 in [1].
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Theorem 2.2 Let G be a signed bipartite graph. If G is balanced but not
restricted balanced then either the underlying graph is Rio or G contains a
2-join, a 6-join or an extended star cutset.

2-Join Decomposition
Let E(KBD) U E(KEF) be a 2-join and GBE (GDF) the union of the compo-
nents of G \ E(KBD) U E(KEF) containing a node of B (a node of D). Recall
that, according to our definition of a 2-join in Part I [1], GBE contains E
and GDF contains F. When neither D U F nor B U E induces a biclique, we
construct the block G1 from GBE as follows:

"* Add two nodes d and f, connected respectively to all nodes in B and
to all nodes in E.

"* Let P2 be a chordless path in GDF connecting a node d' E D to a
node f' E F. If w(P 2) = 0 mod 4 or w(P2 ) -- 2 mod 4, nodes d and
f are connected by a path of length 4 cf weight 0 or 2 respectively. If
w(P2) = 1 mod 4 or w(P 2) - 3 mod 4, nodes d and f are connected
by a path of length 5 of weight 1 or 3 respectively. Denote this path
by Pdf. Sign the edges between node d and the nodes in B exactly the
same as the corresponding edges between d' and the nodes of B in the
original graph. Similarly, sign the edges between f and the nodes in E
exactly the same as the corresponding edges between f' and the nodes
in E.

The block G2 is defined similarly from GDF.

Remark 2.3 If E(KBD) U E(KEF) is a 2-join and B U E (D U F) induces
a biclique, then B U E (D U F) is a biclique cutset of G.

Theorem 2.4 Let G, and G2 be the blocks of the decomposition of the signed
bipartite graph G by a 2-join E(KBD) U E(KEF), such that neither B U E
nor D U F induces a biclique. If KBD U KEF is balanced, then G is balanced
if and only if both G1 and G 2 are balanced.

The following lemma is used in the proof of Theorem 2.4.

Lemma 2.5 Let G be a signed bipartite graph with no unquad hole of length
four. For every biclique KBD in G, we can scale G on the nodes in B U D
so that every edge in E(KBD) has weight +1.
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Proof: If IBI = 1 then we can scale on nodes in D to obtain the result.
Similarily, for IDI = 1.

We can assume IBI _> 2 and ID! Ž_ 2. Let b E B and d E D. Scale at
nodes d' E D so that all edges (b, d') have weight +1. Scale at nodes b' E B
so that all edges (b', d) have weight + 1. Every d' E D \ {d} and b' E B \ { b}
induce a hole b, d, b', d', b of length four. By assumption this hole is quad.
Hence (b', d') must have weight +1. 0

Remark 2.6 Let G be a signed bipartite graph with no unquad hole of length
4. By Lemma 2.5 there exists a signed graph G', which is obtained from G
by a sequence of scalings, such that all the edges in E(KBD) U E(KEF) have
weight +1, since KBD and KEF are node disjoint.

Proof of Theorem 2.4: By Remark 2.6 we can assume that all the edges
in E(KBD) and E(KEF) have weight +1. First we show that G1 and G2 are
balanced if G is balanced. Every hole H in G1 corresponds to a hole H' in
G, except for the case where H contains nodes d and f and no other nodes
of Pdf, and D U F is a biclique in G. The existence of such a biclique would
contradict our assumption. The hole H' has the same weight as H, since all
the edges of E(KBD) U E(KEF) are all signed positive. Thus G1 is balanced
if G is balanced. Similarly for G2 .

Now assume that G, and G2 are balanced, but G is not. Let H be an
unquad hole of G. If it contains no edge of GDF, there exists a hole in G1
which is unquad. The same argument holds for GBE.

Let H = b, d,Q 2,f',e',Q1 ,bY where b' E B,d' E D,f' E F and e' E E
be an unquad hole in G. Since G1 is balanced, w(Q 2 ) and w(Pdf) are not
congruent modulo 4. But by defintion of a block, there exists a path P2 from
d" E D to f" E F, such that w(P 2) is congruent to w(Pdf) modulo 4. The
holes H1 = d", P2, f", P,b, d" and H 2 = d', Q2, f', e, Peb, b, d' have distinct
weights modulo 4. Hence one of them must be unquad, contradicting our
assumption. 0

6-Join Decomposition
Let A 1 ,... , A6 be disjoint nonempty node sets in the signed bipartite graph G
such that the edges of the graph A induced by U=1A, form a 6-join. Let G
be the union of the components of G \ E(A) containing a node in A1 U A3 U A5
and G246 the union of the components containing a node in A2 U A4 U A 6.
We construct the block G1 from G135 as follows:
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"* Add node a2 and edges between a2 and all the nodes in A 1 and A3,
node a4 and edges between a4 and all the nodes in A3 and As and node
a6 and edges between a6 and all the nodes in As and A 1 .

* Pick any three nodes a' E A2, a' E A4 and a' E A6 and sign the
edges of G, connected to a2, a4 and a6 according to the signs of the
corresponding edges connected to a', a' and a'.

Similarly, the block G2 is defined from G246.

Theorem 2.7 Let G1 and G 2 be the blocks of the decomposition of the signed
bipartite graph G by a 6-join A = G(U?=1 Aj) such that A is balanced. Then
G is balanced if and only if both G1 and G2 are balanced.

We first prove the following lemma.

Lemma 2.8 If A does not contain an unquad hole, then there exists a signing
of G which is obtained by a sequence of scalings on the nodes of A, such that
for every biclique Kg,A,+,,i E {1,...,6} (where indices are taken modulo 6)
the edges in the biclique are all signed +1 or they are all signed -1.

Proof: By Lemma 2.5 we can sign all the edges in E(KA1 A2), E(KA3 A,)

and E(KAA 6 ) to be +1. W.l.o.g. let E(KA2A3 ) contain an edge signed +1
and another signed -1. Now there exist in A two holes of length 6 which
differ in weight by 2. Clearly one of these must be unquad contradicting our
assumption that A contains no unquad hole. 0

Proof of Theorem 2.7: By Lemma 2.8 we can assume that for every
biclique KAiAi+,, i E {1,.. ., 6}, the edges of the biclique are all signed +1 or
they axe all signed -1.

It follows from the definition of the blocks that G1 and G2 are induced
subgraphs of G and so are balanced if G is balanced.

Let H be an unquad hole of G. If it contains no edge of G 246 , there exists
a hole in G1 which is unquad. The same argument holds for G 135.

Now we can assume that the hole has an edge in G 135 and an edge in G 246 .
Clearly H must have exactly four nodes in common with V(A) otherwise H
contains a chord.
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Figure 1: Odd wheel, short 3-path configuration and tent

W.l~o.g. let H = a',P, a', a', P2, a', a' where a' E A,, a' E A2, a' E A4

hole contradicting our assumption. 0

3 Double Star Decomposition

A double star is a node set N(u) U N(v) where uv is an edge of the graph. Let
S be an extended sta1 cutset or a double stat cutset of G and Gt,.t., Ck the
connected components of G \ S. We define the blocks of the decomposition to
be signed bipartite graphs G1, .. ., Gk where each of the blocks Gn is obtained
bsetaking the induced signed subgraph on the node set V(Ga) U S.

The extended staD and double star decompositions axe not balancedness

preserving, i.e. the blocks Gi,-. .. , Gk may be balanced even though the
signed bipartite graph G is not. For example the graphs of Figure 1 ate
not balanced, but contain a double star cutset with resulting blocks that
are balanced. Our recognition algorithm for the class of balanced signed
bibipartite graphs exploits the structure of signed bipartite graphs that ane
not balanced. Confortia and doubeand later Conforti, Cornuijols and Rao
[2] have studied bipartite graphs that are not balanced. In the next section
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this study is extended to signed bipartite graphs.
If the signed bipartite graph G is decomposed recursively using extended

star decompositions on the blocks, we could end up using an exponential
number of steps in the decomposition. Our recognition algorithm uses double
star decompositions instead, for which we can prove that the number of steps
is polynomial.

Definition 3.1 A node u is said to be dominated if there exists a node v,
distinct from u, such that N(u) C N(v). A graph is said to be undominated
if it contains no dominated nodes.

Lemma 3.2 [2] If an undominated bipartite graph contains an extended star
cutset, then it contains a double star cutset.

3.1 Smallest Unquad Holes

Assume the signed bipartite graph G is not balanced and let H* be a smallest
(in length) unquad hole in G. By Remark 2.1 H* is a smallest unquad hole in
any signed graph obtained from G by a sequence of scalings. In this section
we study properties of strongly adjacent nodes to H*.

Definition 3.3 A node u strongly adjacent to a hole H in G is odd-strongly
adjacent if u has an odd number of neighbors in H. If u has an even number
of neighbors in H, then u is even-strongly adjacent. The sets Ar(H) and
At(H) contain the odd-strongly adjacent nodes in H which belong to Vy and
VI respectively.

We will now prove the following fundamental properties of the sets A, (H*)
and Ac(H*) associated with a smallest unquad hole H*.

Property 3.4 Every even-strongly adjacent node to H* is a twin of a node
in H*.

Property 3.5 There exists a node x, E V, fn V(H*) which is adjacent to all
the nodes in A,(H*).

Property 3.6 There exists a node xc E VC f V(H*) which is adjacent to all
the nodes in A,(H*).
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Conforti and Rao [3] prove the above properties for a bipartite graph
which is signed so that all of its edges have weight +1.

Proof of Property 3.4: Suppose u has an even number of neighbors,
u 1 3u 2 ,...,u2k, k > 2 in H'. Let Si, i = 1,2,...,2k be the sectors of
(H', u) having nodes ui, ui+1 as endnodes (where indices are taken modulo
2k).

By scaling of the graph at every node ui for which the edge uui has weight
-1, we can obtain a graph in which all the spokes of (H*, u) have weight +1.
Now since H' is unquad, there is a sector, say Si, of weight 0 mod 4. Then the
cycle u, ui, Si, ui+,, u is an unquad hole of smaller length than H'. Hence if u
is an even-strongly adjacent node in H' it must have exactly two neighbors,
say ul and u2. W.l.o.g the edges uu1 and uu 2 have weight +1. Clearly the
two uju 2-subpaths of H* say P1 and P2 , are such that one of them is of
weight 0 mod 4 and the other is of weight 2 mod 4. Suppose P 2 is of weight
2 mod 4. Then P 2 must have length two for otherwise u, u1 , P1, u 2, u would
be an unquad hole of smaller length than H' . Hence ul and u 2 must have
a common neighbor, say u', in H'. 0

To prove Property 1.5 and Property 3.6 we need the following lemma.

Lemma 3.7 If u, v E A,(H'), then they have at least one common neighbor
in H*. Moreover in any sector of (H*, v), node u has either an even number
of neighbors, or exactly one neighbor adjacent to v.

Proof: First we show that u cannot have an odd number, greater than
one, of neighbors in any one sector of (H*, v). Suppose not. Let u have
an odd number of neighbors, greater than one in sector Sk of (H', v). Let
H = v, Sk, v. Now (H, u) is an odd wheel, therefore this wheel contains an
unquad hole which must be of smaller length than H*. Hence u must have
either an even number or exactly one neighbor in any sector of (H', v).

Next we show that if node u has exactly one neighbor in some sector
then this node is also adjacent to v. This in turn implies that at least one
node in H* is a neighbor of both u and v since node u has an odd number
of neighbors in H*.

Suppose in sector Sk node u has a unique neighbor uk which is not a
neighbor of v. Let Vk-1 and Vk be the end nodes of Sk, P1 and P 2 be the
Vk-luk and VkUk-subpaths of Sk repectively. Since u is strongly adjacent to



H*, it has a neighbor in another sector, say S1 having one endnode vi distinct
from vk-- and vk. Let ul be the neighbor of u closest to vi in sector Si. Now
there is a 3PC(uk, v) using paths P1, P2 and nodes ul and vi. This 3-path
configuration must contain an unquad hole which must be of smaller length
than H*, which contradicts our choice of H*. 0

Lemma 3.8 Every three nodes in Ac(H*) have a common neighbor in H*.

Proof: Let U = {uI,u 2,u 3} g A,(H*). Note that by Lemma 3.7 every
pair of nodes in A,(H*) have a common neighbor in H*. Assume that there
is no node of H* that is adjacent to all three elements of U. Define the
following sets :

A13 = {v E V(H*)Iul and u3 are adjacent to v}
A23 = {v E V(H*)Iu 2 and u3 are adjacent to v}
A1 2 = {v E V(H*)Iul and u2 are adjacent to v}

By our assumption A12 n A23 = 0. Consider the wheel (H*, ul) and the
strongly adjacent node u3. Define A03 = {v E A13 1 in the two adjacent
sectors of (H*, ul) with the common node v, there are in total an odd number
of neighbors of u3}. (Note that this definition is not symmetric, i.e. A' 3 is not
necessarily equal to A01). Similarily define A' 3. Now we prove the following
two claims.

Claim 1: Both A13 and A23 contain an odd number of elements.

Proof of Claim 1: We prove that JA' I is odd. Consider the wheel (H*, ul)
and let S1,..., S,, be the sectors of this wheel, with Si having endnodes si
and si+1 (where indices are taken modulo n). For every i = 1,.. . , n let xi
denote the number of neighbors of U3 in sector Si. By Lemma 3.7 every
sector of (H*, ul) either has an even number of neighbors of U3 or exactly
one neighbor, in which case the neighbor is in A13. This and the definition
of A03 leads to the following properties:

(a) If si E A13 then either xi-1 = xi = 1, or both xi- 1 and xi are even.

(b) If si E A13 \ AM3 then either xi- 1 = 1 and xi is even, or xi- 1 is even and
xi=l.

(c) If si and si+1 are not in A1 3 then x, is even.

8



In the summation E!', xi, every neighbor of u3 which is in A13 is counted
twice, so the total number of neighbors of u3 on H* is

IN(u 3) n1 V(H*)I = Zxi - A1a31 (1)
i=1

Further we will show that

n

••Z =_ IA13 \A 31 mod2 (2)
i=1

Now by (1) and (2) we have

IN(u 3) nl V(H*)I (JA13 \ A 3N - 1A131) mod 2

- IA' 3I mod 2

Since u3 is an odd-strongly adjacent node to H*, we have that IA13i is
odd.

Now we prove (2). Clearly the parity of E!I' xi is the parity of the number
of sectors with an odd number of neighbors of u3 . In this paragraph we will
refer to these sectors as odd sectors. By Properties (a), (b) and (c), if Si is
an odd sector, then it has exactly one neighbor of U3 (i.e. xi = 1), and either
si or si+1 is an element of A13. Each element in A13 belongs to 0, 1 or 2 odd
sectors. Clearly the parity of the number of odd sectors is equal to the parity
of the number of elements in A13 which belong to exactly one odd sector. By
Properties (a) and (' , A13 \ A' 3 is the set of elements of A13 that belong to
exactly one odd sector. Thus the parity of E', xi is the same as the parity
of JA13 \ A031.

This completes the proof of the claim.

Claim 2: Let v1,v 2 E V(H*) \ A1 2 be neighbors of ul and u2 respectively.
If P is a vIv 2-subpath of H*, such that ul and u2 have no neighbors in
V(P) \ {V1 , V2}, then u3 has an even number of neighbors on P.

Proof of Claim 2: Suppose that U3 has an odd number of neighbors on
P.

Case 1: U3 has exactly one neighbor v3 on P.

9



W.l.o.g v3  vi. By Lemma 3.7, any two nodes of A,(H') have a common
neighbor on H*. Let V1 2 E V(H') be a common neighbor of ul and u 2, and
let v13 E V(H') be a common neighbor of ul and u 3. By our ý.ssumption
A12AA 13 = 0, so v12 7 v13 . Now there is a 3PC(v3, uI) where nodes v1 , v12 , v13

belong to distinct paths of the 3-path configuration, which must contain an
unquad hole of length smaller than H*. This contradicts our choice of H'.

Case 2: u3 has an odd number of neighbors, greater than one, on P.
Let V12 be defined as above. Now there is an odd wheel (C, u3 ), where

C =- U1 , Vi, P, v 2,u 2,V1 2 , u1 . Since v, is an odd-strongly adjacent node either
the vIv 12-subpath of H* that does not contain v2 or the v2v12-subpath of H'
that does not contain vi, is of length greater than two. Therefore the wheel
contains an unquad hole of length smaller than H*, which contradicts our
choice of H'. This completes the proof of Claim 2.

Now let sl,...,s,, be the neighbors of ul on H', and ti,..., t m be the
neighbors of u2 on H*. Let P 1,... , P1 be the subpaths of H*, whose endnodes
are consecutive elements of {Is,..., S, , t,. I I , tm} and are such that for every
i E {1,...,l}, Pi and Pi+l (where indices are taken modulo 1) have exactly
one node in common. For every i -- 1,... , 1, let xi denote the number of
neighbors of u3 in Pi. Let the endnodes of Pi be denoted by pi and pi+l
(where the indices are taken modulo 1). By Lemma 3.7 and Claim 2 every
Pi that does not have an even number of neighbors of U3, has exactly one.
The PA's with exactly one neighbor of U3 are characterized as follows:

(i) If xi = 1 and pi E A' 3, then by Claim 2, pi+1 is a neighbor of Ul. Now
by Property (a) in Claim 1 xi-i = I and hence by Claim 2, pi-i is a
neighbor of ul. Similarily if xi = 1 and pi E A23, then xi-I = 1 and
both Pi-I and pi+l are neighbors of u 2.

(ii) If xi = 1 and Pi E A13 \ A03, then by Claim 2, pi+i is a neighbor of
ul. Also either by Property (b) in Claim 1 or by Claim 2, xi-1 is even.
Similarily if xi = 1 and pi E A23 \ AI3, then pi+i is a neighbor of u 2 and
xi_1 is even.

In the summation E!'= xi, every neighbor of u 3 which is in A13 U A23 is
counted twice, so the total number of neighbors of u3 on H* is

n

IN(u 3) n V(H')I = x- IA13 1- 1A231 (3)
i=1

10



Further we will show that

x, = (iA,3 \ AN3 + A23 \ A' 31) mod2 (4)

Now by (3) and (4) we have

IN(u 3) n V(H")I- (IA13 \ A•31- IA131 + IA23 \ A231- 1A231) mod 2
-(JAN 3 + iA2 3 ) mod 2

By Claim 1 (]A~�1 + JAnai) is even, which contradicts our choice of u 3.
Thus A13 and .423 cannot be disjoint.

Now we prove (4). Clearly the parity of i=1 x, is the same as the parity
of the number of sectors with an odd number of neighbors of u3 . If Pi has an
odd number of neighbors of u3 , then it has exactly one neighbor (i.e. xi = 1)
and either pi or pi+l is an element of A13 UA 23 . W.l.o.g. let pi E A13 . Pair off
Pi- 1 and Pi if the only neighbor of U3 in these paths is the node common to
Pi- 1 and Pi, namely pi. By Property (i) and (ii) this is possible if and only if
pi E A03 U A23. Notice that in this case xi- 1 + xi = 2 and the sectors together
provide an even count in the sum E!.I xi. Hence the parity of JA 13 U A23 1 is
the same as the parity of JA13 \ A03j + jA 2 \ Ah3 , ad so (4) holds.

This completes the proof that A13 and A23 are not disjoint. Hence we
have the proof of the lemma. 0

Proof of Property 3.5: If H* is of length 6 or less then the property
clearly holds. Suppose now that H* has length greater than 6. Suppose
W C A,(H*) is such that for every proper subset W' of W there exists a
node of H* which is adjacent to all nodes in W', but there exists no node of
H* adjacent to all nodes in W. By Lemma 3.7 and Lemma 3.8, JWJ > 3.
Let W = {w,li = 1,2,..., p" and let W1 = {w,ili = 1,...,p,i 5# l}. Now for
I = 1,2,... ,p, all the nodes in W, have a common neighbor say ti, in H*.
Hence for i = 1,... ,p, node ti is adjacent to wj, for j = 1,... ,p,j 0 i, but i,
is not adjacent to wi. Now there exists an odd wheel, w1 , t2, W3 , tl, w 2, t3,1w1

with center t 4, hence it must contain an unquad hole smaller than H*. This
contradicts the choice of H*. 0

By symmetry Property 3.6 holds as well.
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Lemma 3.9 Let v be a twin of a node vo in H*, with neighbors vi and v2 in
H*. If H* is of length greater than four, then the weights of the paths vI, v, v2
and v1 , Vo, v2 are congruent modulo 4.

Proof: Suppose not. Then the hole vI, vo, v2 , v, v, is unquad, and of
smaller length than H', which contradicts our choice of H*. 0

Definition 3.10 A tent r(H, u, v) is a subgraph of G induced by node set
V(H) U {u, v}, where H is a hole of G and u, v are adjacent nodes which are
even-strongly adjacent to H with the following property:

The nodes of H can be partitioned into two subpaths Pu and P,, containing
the nodes in N(u) n H and N(v) n H respectively.

A tent r(H,u,v) is referred to as a tent containing H. We now study
properties of a tent T(H*, u, v) containing a smallest unquacl hole H* and we
assume throughout the paper that the first node, say u in the definition of
a tent r(H, u, v) belongs to V" and that node v belongs to Vc. We use the
notation of Figure Ic, where nodes ul, u9, u2, vI, vO, v2 are encountered in this
order, when traversing H* counterclockwise, starting from ul.

Lemma 3.11 Nodes Vo, u1 , u2 satisfy at least one of the following properties:

"* The set A,(H*) is contained in N(vo) U N(ul).

"* The set Ar(H*) is contained in N(vo) U N(u 2).

Nodes uo, vI, v2 satisfy at least one of the following properties:

* The set Ac(H*) is contained in N(uo) U N(vi).

* The set Ac(H*) is contained in N(uo) U N(v2).

Proof: We prove the first part. Suppose w E AT(H*) is not adjacent
to v0 . Consider the hole H,* obtained from H* by replacing v0 with node
v of r(H*, u, v). By Lemma 3.9, H, is unquad, and since it is of the same
length as H*, it also is a smallest unquad hole. Now w cannot be adjacent to
v, for otherwise w is even-strongly adjacent to Hl*, which violates Property
3.4. Node u is in A,(H,) and has neighbors u1 , u2 and v in Hi*. Since w is
not adjacent to v, by Property 3.6 it follows that w is adjacent to ul or u2.

12



Furthermore, by Property 3.6 the nodes in At(H*) which are not adjacent
to v0 are either all adjacent to ul or they are all adjacent to u2. Therefore
A,(H*) _ N(vo) U N(ui) or Ar(H*) _ N(vo) U N(u2 ). The second part of
the lemma can be proved similarly. 0

Lemma 3.12 Let r(H*, u, v) and r(H*, w, y) be two tents, where wI, w 2 are
the neighbors of w and YI,Y2 are the neighbors of y in H*. Let wo and yo be
the common neighbors of w1 ,w 2 and Y1,Y2 respectively. Then at least one of
the following properties holds:

"* Nodes ul and u2 coincide with w, and w2.

"* Nodes v, and v2 coincide with Y, and Y2.

"* Node uo coincides with y, or Y2.

"* Node vo coincides with w, or w2.

Proof. Suppose the contrary. Then node u does not coincide with w, node
v does not coincide with y , nodes u0 and y are not adjacent and nodes v0
and w are not adjacent. Let P denote the u2 v1-subpath of H* not containing
any other neighbor of u or v. Similarly, let Q denote the v2 u1-subpath of H*
not containing any other neighbors of u and v. Now it follows that y, and
Y2 are contained in P or Q, and w, and w2 are contained in P or Q. Assume
w.l.o.g. that y, and Y2 are contained in P. We now prove the following two
claims.

Claim 1: Node y is not adjacent to u and node w is not adjacent to v.

Proof of Claim 1: Suppose that y and u are adjacent. Now there is an
odd wheel u2 ,P,v1 ,v,u, u2 with center y. This wheel contains an unquad
hole, which is by construction, of smaller length than H*, which contradicts
our choice of H*. Hence y is not adjacent to u. By symmetry, it follows that
w is not adjacent to v. This completes the proof of Claim 1.

Claim 2: Nodes w, and w2 belong to Q.

Proof of Claim 2: Suppose not. Then w, and w2 belong to P. By
assumption, YI and Y2 belong to P. Let P' be the path obtained from P by
substituting y for yo. Now by Claim 1, there is an odd wheel u2 , P', vI, v, U, U2

with center w. This wheel contains an unquad hole, which is by construction,
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of smaller length than H*. This contradics our choice of H*. Hence w, and
w2 belong to Q. This completes the proof of Claim 2.

Now by Claim 1 and Claim 2, there is a 3PC(u, y) that uses at most as
many edges as there are in H*. This 3-path configuration contains an unquad
hole, of smaller length than H*, which contradicts our choice of H*. 0

Definition 3.13 A hole H is said to be clean in G if the following three
conditions hold:

(i) No node is odd.strongly adjacent to H.

(ii) Every even-strongly adjacent node is a twin of a node in H.

(iii) There is no tent containing H.

3.2 Induced Subgraphs Containing Clean Unquad Holos

In this section, we show how to create at most m 4n4 induced subgraphs of
G such that, if G is not balanced, one of the subgraphs, say Gt, contains a
smallest unquad hole which is clean in Gt.

Definition 3.14 Given a graph F, and a node v E V(F), we denote by
NF(v) the set N(v) n V(F).

We define Fiik to be the induced subgraph of F obtained by removing the
nodes in NF(j) \ {i,k} and the nodes in NF(k) \ {j,l}.

PROCEDURE 2

Input: A signed bipartite graph G.
Output: A family f = {G 1, G2,. .. , Gp}, where p < m4n4 , of induced

subgraphs of G such that if G is not balanced, one of the subgraphs in C,
say Gt, contains a smallest unquad hole that is clean in Gt.

Step 1 Let £C = {Gik, I nodes i,j, k, I induce the chordless path i,j, k, I
in G}.

Step 2 Let C = {Qiiki I the graph Q is in L*, nodes in {i,j, k, l} belong
to Q and induce the chordless path i, j, k, I of Q}.

We now prove the validity of Procedure 2.
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Lemma 3.15 If G is not balanced, one of the graphs in £, say Gt, contains
an unquad hole H*, smallest in G, and H" is clean in Gt.

Proof: Assume G is not balanced. Then G contains a smallest unquad hole
H*. Recall that the sets Ar(H*) and Ac(H*) are defined with respect to G.
Consider the following two cases:

Case 1: There is no tent in G containing H*.
By Property 3.5, there exists a node j E VT(G)fnV(H*) that is a common

neighbor of all nodes in Ac(H*). Let i, k be the neighbors of j in H* and
let 1 be the other neighbor of k in H*. Then the graph Gijkl contains H*,
but does not contain any node in A,(HI), and belongs to C*. By considering
Gijkt and applying Property 3.6, it follows that L contains a graph Gt and
H* is clean in Gt.

Case 2: The graph G contains a tent r(H*, u, v).
By Lemma 3.11, the set Ar(H*) is contained in N(vo)UN(ul) or in N(vo)U

N(u 2) and the set A,(H*) is contained in N(uo) U N(vi) or in N(uo) U N(v 2).
Assume w.l.o.g. that A,(H*) is contained in N(vo) U N(ui).

Suppose A,(H*) is contained in N(uo) U N(v1 ) and let u* and v* be the
neighbors of u, and v1, which are distinct from u0 and vo respectively. By
Lemma 3.11 and Lemma 3.12, it follows that the graph Gu.uIUoU2, which
belongs to V', contains H* and satisfies the following properties:

"* No node in A,(H*) that is adjacent to uO belongs to GU.•1•oU2.

"* No node in Ar(H*) that is adjacent to u, belongs to GU.•,aoU2.

"* The graph Gu. u " u does not contain a node w, in a tent r(H*,w,y),
where w, and w2 coincide with u, and u 2.

"* The graph Gu. U I 2 does not contain a node y, in a tent r(H*,w,y),
where y and uo are adjacent.

As a consequence of Lemmas 3.11 and 3.12, applied to GU.5 1 oU2 , it follows
that Z contains an induced subgraph of G, say Gt, which contains H' and
H' is clean in Gt. If AC(H*) is contained in N(uo) U N(v2 ), the proof is
identical. 0
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3.3 Double Star Decompositions

Definition 3.16 A wheel with three spokes and at least two sectors of length
2 is said to be a short 3-wheel.

In this section, we describe a procedure to decompose a signed bipartite
graph with no short 3-wheel into blocks which are induced subgraphs and
do not contain a double star cutset. While decomposing the graph into
blocks, the procedure also checks the existence of a 3-path configuration that
contains nodes in at least two connected components. But first we give a
polynomial time procedure to check for the existence of a short 3-wheel.

PROCEDURE 1

Input: A signed bipartite graph G.
Output: A short 3-wheel of G or the fact that G does not contain such

a node induced subgraph.

Step 1 Enumerate all distinct subsets of six nodes with three nodes in
VT and three nodes in Vc and declare them as unscanned. Go to Step 2.

Step 2 If all subsets are scanned, G does not contain a short 3-wheel,
stop. Otherwise choose an unscanned subset U. If U induces a 6-cycle C =
ai, a2, a3 , a4 , a3 , a6 , ai, having unique chord a2a5 , go to Step 3. Otherwise
declare U as scanned and repeat Step 2.

Step 3 Remove the nodes in N(a2) U N(a 4) U N(a5) U N(a6) \ {ai, a3 }.
If a, and a3 are in the same connected component, then a short 3-wheel
with spokes a2a1 , a 2a3 , a 2a5 is identified, stop. If not, remove the nodes
in N(ai) U N(a2) U N(a3 ) U N(as) \ {a 4,a 6 }. If a4 and a6 are in the same
connected component, then a short 3-wheel with spokes a5 a2, a5a4, a5 a6 is
identified, stop. Otherwise declare U as scanned return to Step 2.

Remark 3.17 The complexity of this procedure is of order O(m 4 n 4 ).

Now we describe a procedure to perform double star decompositions.

PROCEDURE 3

Input: A signed bipartite graph F not containing a short 3-wheel or an
unquad hole of length 4.
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Output: Either a 3-path configuration is detected (hence F is not bal-
anced) or a list of undominated signed induced subgraphs F1,..., Fj1,..., Fq
of F, where q •_ IVC(F)[ 21YV'(F) 2 <_ rn2n2 is constructed with the following
properties:

"* The graphs F1,..., Fj,..., Fq do not contain a double star cutset.

"* If the input graph F contains a clean unquad hole, then one of the
graphs in the list, say Fi, contains an unquad hole of F which is clean
in Fi.

Step 1 Delete dominated nodes in F until no such node exists. Let
M = {F}, T = 0.

Step 2 If M is empty, stop. Otherwise remove a graph R from M.
If R has no double star cutset, add R to T and repeat Step 2. Otherwise,
let S = NR(u) U NR(v) be a double star cutset of R. Let R1,..., R, be the
connected components of R \ S, let R,... , R• be the corresponding blocks,
i.e. R• is induced by V(Rj) U S. Go to Step 3.

Step 3 Consider every pair of nonadjacent nodes up and vq such that
node up is adjacent to u and node Vq is adjacent to v. If both up and Vq

have neighbors in two distinct connected components of R \ S, there is a
3PC(up, vq) and F is not balanced. Otherwise go to Step 4.

Step 4 From each block R!, remove dominated nodes in (N(u) U N(v))\
{ u, v}, until no such node exists. Now remove further any dominated node
until the block becomes undominated.

Add to M all the undominated blocks that contain at least one chordless
path of length 3. Go to Step 2.

Remark 3.18 If a node w E (N(u) U N(v)) \ {u, v} belongs to the undomi-
nated block R• at the end of Step 4, then w is adjacent to at least one node
in the connected component R,.

Before proving the validity of Procedure 3, we need the following defini-
tion:

Definition 3.19 Let G be a signed bipartite graph containing a hole H.
Then C(H) = {Hi I Hi is obtained from H by a sequence of holes H =
Ho, Hl,..., Hi, where Hi and Hi1-, for j = 1, 2,..., i, differ in one node }.
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Lemma 3.20 Let G be a signed bipartite graph which contains no unquad
holes of length 4. Let H be an unquad hole in G. If H' and H differ in at
most one node, then H' is unquad.

Proof: Let H' be obtained from H by replacing node u by node v. Let x
and y be the common neighbors of u and v in H. Since G contains no unquad
of length four, the paths x, u, y and x, v, y have the same weight modulo 4.
Thus, H' is unquad. 0

Lemma 3.21 Let G be a signed bipartite graph containing a smallest unquad
hole H*, but not containing a short 3-wheel and not containing an unquad
hole of length 4. If H* is clean in G, then every hole Hi in C(H*) is clean
in G.

Proof: We prove the lemma by induction: it suffices to show that, if H1* is a
hole that differs from H* in only one node, then Hi' is clean in G.

By Lemma 3.20, H1* is an unquad hole of smallest length. By Property
3.4, condition (ii) of Definition 3.13 is satisfied. Hence, if the lemma is false,
condition (i) or (iii) of Definition 3.13 is not satisfied. Therefore we consider
the following two cases.

Case 1: Condition (i) of Definition 3.13 is not satisfied.
Now a node w must be odd-strongly adjacent to Hl*. Since no node

is odd-strongly adjacent to H*, it follows that w has three neighbors, say
wl, w2, W3 in H,*. Two of these neighbors, say w, and W2 must be in H* and,
by Property 3.4, they have a common neighbor, say w0 in H*. Since W3 is in
Hi; but not in H*, it follows that H,* is obtained from H* by replacing some
node u - wl, W2 in H* with w3. Let ul and u2 be the neighbors of u in H*.
Note that w3 is adjacent to ul and U2 and u does not coincide with w, or
w2. Hence ul and U2 do not coincide with too. Now r(H*, w 3 , w) is a tent,
contradicting the assumption that H* is clean in G.

Case 2: Condition (iii) of Definition 3.13 is not satisfied.
There must be a tent r(Hi;, u, v). We first show the following claim:
Claim: At least one of the nodes u1 ,u 2 ,v1 ,v2 does not belong to the hole

H*.
Proof of Claim: Assume not. Since u and v are not in H,*, it follows that

at most one of them is in H*. If u is in H*, then u0 is not in H* and v is
odd-strongly adjacent to H*. So u is not in H* and, by symmetry, node v is
not in H*.
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Assume that neither u nor v belong to H* and let w 0 U1 , u 2 , v1 , v2 be
a node in H° but not in H,*. Nodes w and u are not adjacent, otherwise
node u is odd-stongly adjacent to H*, contradicting the assumption that H*
is clean. By symmetry, it follows that nodes w and v are not adjacent. Now
r(H*, u, v) is a tent, contradicting the assumption that H* is clean and the
proof of the claim is complete.

By the above claim, one of the nodes u1 ,u 2 ,v 1 ,v 2 is not in H*. Assume
w.l.o.g. that u2 is not in H*. Clearly, node u is not in H*. Node v is not in
H*, otherwise node v0 is not in H*, node u2 coincides with vo and r(H, u, v)
is not a tent.

Thus the hole Hi• is obtained from H* by replacing a node w with u2 ,
where w is adjacent to u0 . Let u3 in H* be the other neighbor of Us2. It follows
that u3 is adjacent to w. Let Q denote the vIu 3-subpath of H* not containing
v2 . Consider the hole C = u, v, vI, Q,u 3 , w,uO, u, u. Now the wheel (C, u 2)
is a short 3-wheel, contradicting the fact that G does not contain a short
3-wheel. 03

Remark 3.22 Assume that the signed bipartite graph F contains a smallest
unquad hole H* that is clean in F. If F does not contain a short 3-wheel and
it does not contain an unquad hole of length 4, then an undominated graph
obtained from F by deleting all the dominated nodes contains a clean unquad
hole in the family C(H*).

Lemma 3.23 Let F be a signed bipartite graph satisfying the following prop-
erties:

"* The graph F does not contain a short 3-wheel.

"* The graph F does not contain an unquad hole of length 4.

"* The graph F contains a smallest unquad hole H* that is clean in F.

Then the output of Procedure 3 is one of the following:

* A 3-path configuration is detected in Step 3.

* One of the undominated blocks, say Fi, obtained as ouput of Procedure
3, contains an unquad hole in C(H*).
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Proof: Let S = N(u) U N(v) be a double star cutset of F. Let F1 ,..., Ft
be the connected components of F \ S and Fl',..., Ft* be the corresponding
blocks. We now show that an unquad hole H' E C(H*) is contained in some
block Fi" obtained at the end of Step 3. There are three cases to consider.

Case 1: Both nodes u and v belong to H*.
Let ul and v, in H* be the other neighbors of u and v respectively. Now

the nodes in V(H*) \ {u, v, u1 , vi} are in some connected component Fi and
F* contains H*.

Case 2: Either node u or node v is in H*.
Assume w.l.o.g. that u is in H* and v is not in Ha. Let ul and u2

be the neighbors of u in H*. Note that v can have at most one neighbor
distinct from u in H*. Suppose v does not have any neighbor other than u
in H*. Then the nodes in the set V(H*) \ {u, u1 , u2 } are in some connected
component Fi and Fi* contains H*. Suppose v has one other neighbor, say
v1, in H*. Now v, and u must have a common neighbor, say ul, in H*. Now
the nodes in the set V(H*) \ {v 1 , u, u1 , u2 } are in some connected component
Fi and it follows that Fi* contains H*.

Case 3: Neither u nor v belongs to H*.
Assume w.l.o.g. that IN(u) n V(HS)I • IN(v) n V(H*)I There are three

subcases to consider:
Case 3.1: The set N(u) n V(H*) is empty.
If IN(v) n V(H*)I = 0 or 1, the unquad hole H* is preserved in some

block F,. Suppose now that N(v)fnV(Ha) = {v 1 , V2 }. Let v0 be the common
neigbor of v, and v2 in H*. Now the nodes in V(H*) \ {vo, v1 , v2} will be in
some connected component Fi. If vo is in Fi, then the block Fi* contains H*.
If v0 is not in Fi, let H" be obtained from H* by replacing v0 with v. Now
H" belongs to C(H*) and the block Fip contains H".

Case 3.2: N(u) n V(H*) = {ul}.
Now IN(v) n V(H*)I = 1 or 2. Suppose N(v) n V(H*) = {v1}. If ul and

v, are adjacent in Ha, then H" is preserved in some block Fi*. Suppse ul
and v, are not adjacent. Let P and Q be the two ulvi-subpaths of H*. The
nodes in V(P) \ {ul, vl} will be in some connected component Fi and the
nodes in V(Q) \ {ul, vi } will be in some connected component Fi. If the two
connected components coincide, H* is preserved in Fi*. If the two connected
components do not coincide, there is a 3PC(u1 , v1 ) and Step 3 in Procedure
3 detects this 3-path configuration.
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Suppose N(v) fV(H*) = {v1,v 2}. Let v0 be the common neighbor of
v, and v2 in H*. Scale at v, and v2 to get the edges vv, and vv 2 to have
weight +1. Now since F does not contain an unquad hole of length 4, the
weight of the path v1, v0 , v2 is congruent to 2 mod 4. Now scale at u and u,
to get the edges uv and uu1 to have weight +1. Let P be the ulv 1-subpath
of H* that does not contain v2 , and let Q be the uIv 2-subpath of H* that
does not contain vi. w(P) and w(Q) are either congruent to 1 or 3 mod 4.
Since w(vI, v0 , v2) - 2 mod 4, w(P) # w(Q) mod 4. Now if u, is not adjacent
to v, or v2, then either v,u, u, P, vI,v or v,u,iuU, Q, v 2 , v is unquad and of
smaller length than H*. Suppose u, and v, are adjacent. Now the nodes in
V(H*) \ {ul, v1, Vo, v2 } will be in some connected component Fi. If v0 is in
the same connected component Fi then H* is preserved in 7/*. Suppose v0 is
not in the same connected component Fi. Let H" be obtained from H* by
replacing vo with v. Now H" belongs to C(H*) and the block Fi* contains
H".

Case 3.3: N(u) n V(HS) = 1U 1,U2 }
Now N(v) n V(H*) = Viv, v2 }. Let uo be the common neighbor of u, ant.

u2 in H" and let v0 be the common neighbor of v, and v2 in H*. If Uo is
not adjacent to v and v0 is not adjacent to u there is a tent r(H*, u, v). So
assume w.l.o.g. that uo coincides with v1. Then V2 is adjacent to U2 and H*
is preserved in some block Fi*.

Thus in all cases some block F* contains the unquad hole H* or an unquad
hole H" in C(H*). Now by Lemma 3.21 the unquad hole H" is clean in F and
hence H" clean in F*. By Remark 3.22 the undominated graph FP defined in
Step 4 of Procedure 3 must contain an unquad hole in C(H*). Repeating the
same argument for every undominated block FP, which contains an unquad
hole in the family C(H*) and is added to the list M, the lemma follows. 01

Lemma 3.24 The number of induced subgraphs in the list T produced by
Procedure 3 is bounded by IVc(F)12IV (F)12.

Proof: Let S = N(u) U N(v) be a double star cutset of F. Let Fl,..., Ft be
the connected components of F \ S and let F,*,..., Ft* be the corresponding
undominated blocks. We prove the following two claims.

Claim 1: No two distinct undominated blocks contain the same chordless
path of length 3.
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Proof of Claim 1: Suppose by contradiction that a chordless path P =

a, b, c, d belongs to two distinct undominated blocks F, and F,*. Then {a, b, c,
d} C Nf(u) U NF(v). There are three cases to consider.

Case 1: Both nodes u and v belong to {a, b, c, dl.
Node d cannot coincide with u for otherwise a and d are adjacent and P

is not a chordless path. Similarly d does not coincide with v and a does not
coincide with u or v. Hence we can assume that u = b and v = c. From Step
4 of Procedure 3 it follows that node a has at least one neighbor in each of
the connected components Fi and Fj for otherwise it would have been deleted
from one or both the undominated blocks F, and Fj*. Similarly node d has
at least one neighbor in each of the connected components F, and Fj. Now
Step 3 of Procedure 3 detects a 3-path configuration.

Case 2: Either u or v belongs to {a, b, c, d}.
The same argument used in Case 1 shows that node u coincides with b

or c. Assume w.l.o.g. that u and b coincide. Now a and c are neighbors of
u, d is adjacent to v and both a and d must have at least one neighbor in F,
and Fj. Again Step 3 of Procedure 3 detects a 3-path configuration.

Case 3: Both u and v do not belong to {a, b, c, d}.
As in the previous cases both a and d must have at least one neighbor in

F,, at least one neighbor in Fj and Step 3 of Procedure 3 detects a 3-path
configuration. This completes the proof of Claim 1.

Claim 2: The graph F contains at least one chordless path of length 3
which is not contained in any of the undominated blocks F>.

Proof of Claim 2: Each of the connected components F1,..., Ft must
contain at least two nodes, since F is an undominated graph. At least one
node in Fi must be adjacent to a node in NF(u) U NF(v). Assume w.l.o.g.
that node pi in Fi is adjacent to a neighbor of v, say di. Suppose now no
node in Fi is adjacent to a node in N(u). Then by Step 4 of Procedure 3, the
undominated block Fi* does not contain any neighbor of u other than v. This
in turn implies that in the same step node u would have been deleted from
Fi*. Now P = pi, di, v, u is a chordless path of length 3 in F but P is not in
any of the undominated blocks Fj 6,..., Ft*. So a node in Fi must be adjacent
to a node, say si, which is a neighbor of u. Repeating the same argument for
j = 1,..., t, it follows that each connected component F, contains a node,
say wj, which is adjacent to a node, say sj E NF(u). Suppose now sj has
a neighbor, say g in a connected component Fk, distinct from Fj. Let q be
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a neighbor of g in Fk. Then P = q, g, sj, wj is a chordless path of length 3
which is contained in F but not in any of the undominated blocks Fe",..., Ft.

Suppose now that sj does not have any neighbor in a connected com-
ponent, say Fl. Then in Step 4 of Procedure 3, node sj is deleted from
the undominated block Ft'. Now the path wj, sj, u, sj is a chordless path of
length 3 which is contained in F but not in any of the undominated blocks
Fl",..., Ft. This completes the proof of Claim 2.

Every undominated block that is added to the list M in Step 4 of Proce-
dure 3 contains a chordless path of length 3. Hence every undominated block
that is added to the list T in Step 2 contains a chordless path of length 3. By
Claim 1, the same chordless path of length 3 is not in any other undominated
block that is added to the list T. By Claim 2, it follows that the number of
double star cutsets used to decompose the graph F with Procedure 3 is at
most IVc(F)121Vr(F)12. Hence the lemma follows. 0

4 6-Join Decompositions

In this section we describe a procedure to decompose a signed bipartite graph
into blocks that do not contain a 6-join. We also show that if the graph does
not contain an extended star cutset then neither do the undominated blocks.

PROCEDURE 4
Input: A signed bipartite graph G, not containing an unquad hole of

length 4 or 6, or a short 3-wheel.
Output: A list of signed bipartite graphs M {D 1, I...D2 , Dr,} satis-

fying the following properties:

"* No graph in the list M contains a 6-join.

"* The graph G is balanced if and only if all the graphs in the list M are
balanced.

Step 1 Let C = {G}, and M = 0.
Step 2 If C = 0, stop. Otherwise remove a graph R from £. Enumerate

all distinct subsets of six nodes with three nodes in Vt (R) and three nodes
in VC(R) and declare them as unscanned. Go to Step 3.
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Step 3 If all six node subsets are scanned, add R to M and return to
Step 2. Otherwise choose an unscanned subset U and declare it scanned.
If the nodes in U do not induce a 6-hc:e a1 ,a 2,... ,as,a 1 in R, then repeat
Step 3. Otherwise, let Aj = {a,} for every j = 1,...,6, T = {al,a 3 , as} and
B = {a2, a4, a6 }. Let S = V(R) \ (TU B) and go to Step 4.

Step 4 Apply to the nodes in S, the following rules in order, repeatedly,
until no further application is possible.

Rule 1: If u is adjacent to at least one node in each of A,, Ai+ 2 , A,+ 4,
where i is odd, then if u is adjacent to a node in B then go to Step 3, else
put u in T and remove it from S.

Rule 2: If u is adjacent to at least one node in each of A,, A,+ 2 , A,+4,
where i is even, then if u is adjacent to a node in T then go to Step 3, else
put u in B and remove it from S.

Rule 3: If u is adjacent to a node in Ai, ,. here i is odd, but not to any
node node in Ai+ 2 U Ai+ 4, then if u is adjacent to a node in B then go to
Step 3, else put u in T and remove it from S.

Rule 4: If u is adjacent to a node in Ai, where i is even, but not to any
node node in Ai+ 2 U Ai+4 , then if u is adjacent to a node in T then go to
Step 3, else put u in B and remove it from 5.

Rule 5: If u is adjacent to a node in Ai and a node in Ai+ 2, where i is
odd, ane - is adjacent to a node in T, then if u is also adjacent to a node in
B then go to Step 3, else put u in T and remove it from S.

Rule 6: If u is adjacent to a node in Ai and a node in A4+2, where T is
even, and u is adjacent to a node in B, then if u is also adjacent to a node
in T then go to Step 3, else put u in B and remove it from S.

Rule 7: If u is adjacent to a node in B, a node in Ai and a node in Ai+2,
where i is odd, then if there exists a node in Ai U A,+2 to which u is not
adjacent, then go to Step 3, else put u in Ai+1 and in B and remove it from
S.

Rule 8: If u is adjacent to a node in T, a node in Ai and a node in Ai+ 2,
where i is even, then if there exists a node in Ai U Ai+2 to which u is not
adjacent, then go to Step 3, else put u in Ai+1 and in T and remove it from
S.

Rule 9: If u is adjacent to a node in Ai and a node in A4+2 , where i is odd,
but u is not adjacent to some node in Ai U Ai+ 2, then if u is also adjacent to
a node in B then go to Step 3, else put u in T and remove it from S.
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Rule 10: If u is adjacent to a node in A, and a node in Ai+ 2, where i
is even, but u is not adjacent to some node in Ai U Ai+ 2 , then if u is also
adjacent to a node in T then go to Step 3, else put u in B and remove it
from S.

Rule 11: If u is not adjacent to any node in U%1 A,, but it is adjacent to
a node in T, then if u is also adjacent to a node in B then go to Step 3, else
put u in T and remove it from S.

Rule 12: If u is not adjacent to any node in U6= A,, but it is adjacent to
a node in B, then if u is also adjacent to a node in T then go to Step 3, else
put u in B and remove it from S.

Step 5 Remove all nodes in S that are adjacent to every node in A2 U A6
and put them in A1 and in T. Remove all nodes in S that are adjacent to
every node in A2 U A4 and put them in A3 and in T. Remove all nodes in
S that are adjacent to every node in A4 U A6 and put them in A, and in T.
Now G(U= 1 Ai) defines a 6-join that separates T from B.

Step 6 Construct the blocks R, and R2. Delete all dominated nodes and
add the blocks to Z. Return to Step 2.

Remark 4.1 The rules in Step 4 of Procedure 4 are forcing in the sense that
if any of them holds, either node u must be removed from S and added to one
of the sets T, B, A1, A2, A3 , A4, A5 , A6 if there is a 6-join, or it is detected
that no 6-join is possible. In Step 5 of Procedure 4 the nodes that remain in
S are of the following two types:

"* a node u is not adjacent to any node in T U B

"* a node u is adjacent to every node in Ai U Ai+2, for souse i, but it is
not adjacent to any node in (T u B) \ (A, u Ai+2 ).

Now by Step 5 it follows that G(U.=.Ai) defines a 6-join. Moreover the
graphs in list M do not contain a 6-join.

Lemma 4.2 Let G be a signed bipartite graph not containing an extended
star cutset, a short 3-wheel, and not containing an unquad hole of length 4
or 6. Let M = {Di, D2, ... , D} be the list of graphs produced from G by
Procedure 4. Then r is O(n + m) and the graphs in M do not contain an
extended star cutset or a 6-join. Moreover G is balanced if and only if all the
graphs in the list M are balanced.
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Proof. Let G be a signed bipartite graph, not containing an extended
star cutset, or a short 3-wheel, or an unquad hole of length 4 or 6, that is
decomposed by Procedure 4. Suppose A1 U A2 U A3 U A 4 U A5 U A6 is a 6-join
of G that separates G1 (which contains Ai, i odd) from G2 and let G* and G*
be the corresponding blocks obtained in Step 6 (after deleting all dominated
nodes). We now show that Gt and G* do not contain an extended star cutset.
Suppose Gt contains an extended star cutset S = (x; X; Y; N).

Case 1: a 2, a4 or a6 is an isolated node in the graph G \ S.
W.l.o.g. let a 2 be isolated. Then A1 U A3 C S, which implies there is a

node in GI which dominates a2. But then a2 would have been deleted from

Case 2: y,z E V(G*)\ {a2 , a4, a6} are such that y and z belong to
separate components in G \ S.

Now we will construct from S an extended star S* = (x*, X*, Y*, N*) in
the original graph. If any of a2, a4, a6 are in S \ X then replace them by the
corresponding sets A2, A4 , A6 in the original graph. Let X* = X\ {a 2, a4, ao}.
If a2, a4 or a6 is x, then add the corresponding set A2, A4 or A6 to X* and
label one of the nodes from the set x*. If a2 is in X \ {x}, then if Y contains
at least two nodes from A1, let Y* contain exactly these nodes, add the nodes
in (Y \ Y*) U N to N*, and add A2 and A6 to X*. If Y contains at least two
nodes from A3 but not from A1, let Y* contain exactly these nodes, add the
nodes in (Y \ Y*) U N to N*, and add sets A2 and A4 to X*. Otherwise add
A 2 to X*. Perform similar modifications to S to obtain S* if a4 E X \ {x}
or a6 E X \ {x}.

By the above construction S* is an extended star.
Claim: S* is an extended star cutset in the original graph.
Proof of Claim: Assume that S* is not an extended star cutset in the

original graph. Then there exists a path P in G \ S* which connects y and
z. This path must use two nodes ai E Ai and aý E Aj where i and i and
j are even. W.l.o.g. let us assume it uses a' E A2 and a' E A4. But then a2

and a4 are in different components in G• \ S. W.l.o.g. let there exist a path
from a2 to y and from a4 to z in G• \ S. Since a2 and a4 are not connected
A3 C S. Also one of either A1 C S or A5 C S or a6 E S. But a6 can only
be in S if it is in X \ {x} since it is not adjacent to any node in A3 . If Y
contains at least one node from each of A 1 and A5, then x is the center of a
short 3-wheel. Thus, Y contains two nodes from either A 1 or A5 , then by the
construction of S* one of either A4 or A2 is also in X*. But then a' and a'
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cannot be connected in G \ S" which contradicting the existence of P. This
completes the proof of the Claim.

But the above claim contradicts our assumption that G did not contain
an extended star cutset.

Hence G• does not contain an extended star cutset. By symmetry, G*
does not contain an extended star cutset. Now repeating the same argument
for every graph that is added to the list L, it follows that every graph in the
list M produced by Procedure 4 does not contain an extended star cutset.
By Remark 4.1, the graphs in the list M do not contain a 6-join. Now
Remark 3.22 and a repeated application of Theorem 2.7 shows that if G is
balanced, all the graphs in the list M are balanced and if G is not balanced
at least one graph in the list M is not balanced.

In order to complete the proof of the lemma we now show that the number
of graphs in the list M is O(n + m). This is seen by observing that in each
6-join decomposition the sum of the nodes in the two blocks is exactly 6 more
than the number of nodes in the original graph. This completes the proof of
the lemma. 0]

5 2-Join Decompositions

In this section we describe a procedure to decompose a signed bipartite graph
G into blocks that do not contain a 2-join. We also show that if G does not
contain an extended star cutset or a 6-join then neither do the final blocks.

PROCEDURE 5
Input: A signed bipartite graph G not containing an unquad hole of

length 4.
Output: A list of signed bipartite graphs Af = {B 1, B2,..., B.}, where

r is O(n + m), satisfying the following properties:

"* No graph in the list Ar contains a 2-join.

"* The graph G is balanced if and only if all the graphs in the list AN are
balanced.

Step 1 Let C = {G}, and A=.
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Step 2 If £ = 0, stop. Otherwise remove a graph R from £. Enumerate
all distinct subsets of four nodes cl, c2 E VC, rl, r2 E V' such that c, r, and
c2r2 are edges but c1r2 and c2 r1 are not. Declare this set of four nodes as
unscanned. Go to Step 3.

Step 3 If all subsets of four nodes in V(R) are scanned, add R to K/ and
return to Step 2. Otherwise choose an unscanned subset {cirl, c2r 2} and go
to Step 4.

Step 4 Define A = {c 1}, B = {r 1}, D = {c 2}, F = {r 2}. Apply
Procedure 6 to check whether there exists a 2-join E(KABI) U E(KDF,),

where A C A', B C B'1 D C D', F C F'. If no such 2-join exists, go to Step
5. If a 2-join has been identified, construct the blocks R* and R;, add them
to the list C and return to Step 2.

Step 5 Define A = {cl}, B = {r,}, D = {r2}, F = {c2}. Apply
Procedure 6 to check whether there exists a 2-join E(KABI) U E(KDF,),
where A C A', B C B', D C D', F C F'. If no such 2-join exists, declare
U as scanned and return to Step 3. If a 2-join has been identified, construct
the blocks R* and R*, add them to the list £ and return to Step 2.

PROCEDURE 6
Input: A bipartite graph R and node disjoint bicliques KAB and KDF

such that no node in A is adjacent to a node in D and no node in B is
adjacent to a node in F.

Output: Either a 2-join E* = E(KABI) U E(KDFI), where A C A',
B C B', D C D', F C F' is identified, or no such 2-join exists.

Step 1 Let S= 0 and T= V(R)\(AUBUDUF). Go to Step 2.
Step 2 Apply the Rules 1 to 11 to nodes in T repeatedly until no further

application is possible.
Rule 1 If u is adjacent to a node in A and a node in F, there is no 2-join

E(KAIB,) U E(KDFI).

Rule 2 If u is adjacent to a node in B and a node in D, there is no 2-join
E(KABI) U E(KDF,).

Rule 3 If u is adjacent to a node in S, a node in B and a node in F, there
is no 2-join E(KAI,) U E(KDIF,).

Rule 4 If u is adjacent to a node in S and there exist two nodes fi, f2 E F
such that u and fi are adjacent but u and f2 are nonadjacent, there is no
2-join E(KAIBI) U E(KDF,).

28



Rule 5 If u is adjacent to a node in S and there exist two nodes bl, b2 E B
such that u and b, are adjacent but u and b2 are nonadjacent, there is no
2-join E(KADB,) U E(KD'F').

Rule 6 If u is adjacent to a node in A and a node in D, remove u from T
and add u to S.

Rule 7 If u is not adjacent to any node in A U B and there exist two nodes
dld 2 E D such that u and di are adjacent but u and d2 are nonadjacent,
remove u from T and add it to S.

Rule 8 If u is not adjacent to any node in D U F and there exist two nodes
a,, a2 E A such that u and a, are adjacent but u and a2 are nonadjacent,
remove u from T and add it to S.

Rule 9 If u is adjacent to all nodes in F and to at least one node in S,
but u is not adjacent to any node in B, remove u from T and add it to D.

Rule 10 If u is adjacent to all nodes in B and to at least one node in S,
but u is not adjacent to any node in F, remove u from T and add it to A.

Rule 11 If u is adjacent to at least one node in S, but u is not adjacent
to any node in B U F, remove u from T and add it to S.

Step 3 Remove from T every node u that is adjacent to all nodes in
A and add u to B. Remove from T every node v that is adjacent to all
nodes in D and add v to F. Let A' = A, B' = B, D'= D and F = F. Now
E(KABI) U E(KDF,) defines a 2-join, separating A'U D'U S from B'U F'U T.

Lemma 5.1 After Step 2 of Procedure 6 no node in T is adjacent to a node
in S, and if a node u E T is adjacent to a node in A U D then u is one of
the following two types:

(i) u is adjacent to every node in A, but no node in D U F, or

(ii) u is adjacent to every node in D and no node in in A U B.

Proof:. Rules 3,4,5 and 11 characterize all nodes that are in T and adjacent
to a node in S. So after Step 2 of Procedure 6 has been completed no node
in T is adjacent to a node in S. By Rules 1 and 6, if a node u E T is adjacent
to a node in A, then it is not adjacent to any node in D U F. Now by Rule
8 u is adjacent to every node in A. Similarily, by Rules 2 and 6, if a node
u E T is adjacent to a node in D, then it is not adjacent to any node in
A U B. Then by Rule 7 u must be adjacent to all nodes in D. 0
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Remark 5.2 The rules in Step 2 of Procedure 6 are forcing in the sense that
if any of them holds, node u must be removed from T and added to one of
the sets A, D or S if there is a 2-join E(KAIB,) U E(KDF,), where A C A',
B C B', D C D', F C F'. Rules 1 to 5 detect a contradiction that arises as
a consequence of removing u from T and adding to one of the sets A, D or
S. Now by Lemma 5.1 and Step 3 it follows that the bicliques identified by
Procedure 6 define a 2-join. Moreover the graphs in the list A" do not contain
a 2-join.

Lemma 5.3 Let G be a signed bipartite graph not containing an extended
star cutset, a 6-join Lad not containing an unquad hole of length 4. Let
Al" = { B 1, B2, .. . , B, } be the list of graphs produced from G by Procedure 5.
Then r is of O(n + m) and the graphs in / do not contain an extended star
cutset, a 6-join or a 2-join. Moreover if G is balanced all the graphs in the
list IV are balanced and if G is not balanced at least one graph in the list A'
is not balanced.

Proof: Let G be a signed bipartite graph, not containing an extended
star cutset or a 6-join, that is decomposed by Procedure 5. Suppose E* =
E(KAB) U E(KDF) is a 2-join of G that separates G1 from G2 and let GI and
G* be the corresponding blocks.

Notice that the blocks contain no holes of length less than 7, which use
the paths Pad and Pbf. Hence if the original graph did not contain a 6-join,
neither can the two blocks.

We now show that GT and G* do not contain an extended star cutset.
Suppose G, contains an extended star cutset S = (x; X; Y; N). Let the nodes
in A and D belong to G1 and let nodes b and f in G; represent the nodes in
B and F respectively. The nodes b and f are connected by a path Pbf which
is of length 4 or 5. There are four cases to consider.

Case 1: Node x coincides with b or f.
Assume w.l.o.g. that x coincides with b. Since Pbf is of length at least 4

and E* defines a 2-join, it follows that node f and the nodes in D are not in
S. Hence S separates the nodes in D from a node in G1 \A. If X = {x}, then
S is a star cutset of G; separating the nodes in D from a node in G1 \ A. Now
every node in B defines a star cutset of G separating the nodes in D from a
node in G1 \ A. Hence X must contain at least two nodes. Then at least two
nodes in A are contained in Y. Let x* be a node in B. Let N* = NG(x') \ Y

30



and X* = (X \ {x}) U B. Now S* = (x*, X*, Y, N*) defines an extended star
cutset of G separating the nodes in D from a node in G1 \ A.

Case 2: Node x is an intermediate node of Pbf.
At least one of the nodes b or f is not in S since Pbf is of length at least

4. Assume w.l.o.g. that node f is not in S. Now S is a star cutset of G;
separating the nodes in D from a node in G1 \ A. Then node b must be a
star cutset of G* separating the nodes in D from a node in G1 \ A and we
are in Case 1.

Case 3: Node x is in A or in D.
Assume w.l.o.g. that z is in A. Now node f ý X since E* defines a

2-join. Then S is an extended star cutset of G* separating f from a node in
G1 \ S. If node b is not in S, it follows that S is an extended star cutset of
G separating the nodes in F from a node in G1 \ S. Suppose now node b is
in S. Then if bisin N, let N* = (N\ {b})UB. Now S* = (x,X,Y,N*) is
an extended star cutset of G separating the nodes in F from a node in G1.
Otherwise b is in Y, which means that X C A. Let Y* = (Y \ {b}) U B, and
now S* = (x, X, Y*, N) is an extended star cutset of G seperating the nodes
in F from a node in G1.

Case 4: Node x is in G1 but not in A U D.
Now node b or f is not in S. Assume w.l.o.g. that f is not in S. Then S

is an extended star cutset of G• separating node f from a node in G, \ S. If
node b is not in S it follows that S is an extended star cutset of G separating
the nodes in F from a node in G1 \ S. Suppose now node b is in S. Then
b must be in X and Y C A and it must contain at least two nodes. Let
X* = (X \ {b}) U B. Now S* - (x, X*, Y, N) is an extended star cutset of G
separating the nodes in F from a node in G1.

Hence G• does not contain an extended star cutset or a 6-join. By symme-
try, G2 does not contain an extended star cutset or a 6-join. Now repeating
the same argument for every graph that is added to the list 'C, it follows that
every graph in the list AX produced by Procedure 5 does not contain an ex-
tended star cutset or 6-join. By Remark 5.2, the graphs in the list AK do not
contain a 2-join. Since none of the graphs created in the intermediate steps
of Procedure 5 contain a biclique cutset, a repeated application of Theorem
2.4 and Remark 2.3 shows that if G is balanced, all the graphs in the list K/
are balanced and if G is not balanced at least one graph in the list A( is not
balanced.
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In order to complete the proof of the lemma we now show that the number
of graphs in the list AP is of O(n+m). This is easily seen by observing that in
each 2-join decomposition the sum of the number of nodes in the two blocks
is at most 12 more than the number of nodes in the original graph. If we
stop doing 2-join decompositions when the size of the blocks is smaller than
24 then the number of blocks created is only linear in the number of nodes
in the original graph. This completes the proof of the lemma. 0

6 Recognition Algorithm and its Validity

We now give the recognition algorithm, prove its validity and polynomial
time bound.

ALGORITHM

Input: A signed bipartite graph G.
Output: The signed graph G is identified as balanced or not balanced.

Step 1 Check whether G contains an unquad hole of length 4 or 6. Apply
Procedure 1 to check whether G contains a short 3-wheel. If so, G is not
balanced, otherwise go to Step 2.

Step 2 Apply Procedure 2 to create at most m4n4 induced subgraphs
of G, say G1,..., Gi,... , G. such that, if G is not balanced, at least one of
the induced subgraphs created, say Gi, contains an unquad hole of smallest
length which is clean in Gi.

Step 3 Apply Procedure 3 to each of the induced subgraphs G1,... •, G,,..., Gp
to decompose them into undominated induced subgraphs F 1, ... , Fi, ... , Fq
that do not contain a double star cutset. While decomposing a graph with
"a double star cutset N(u) U N(v), Procedure 3 also checks the existence of
"a 3-path configuration containing nodes u and v and nodes in two distinct
connected components resulting from the decomposition. If such a 3-path
configuration is found, then G is not balanced, otherwise go to Step 4.

Step 4 Apply Procedure 4 to each of the induced subgraphs F1 ,..., Fj,..., Fq
to decompose them into undominated induced subgraphs D1,... , Dk,... .,
that do not contain an extended star cutset or a 6-join. Go to Step 5.

Step 5 Apply Procedure 5 to each of the subgraphs D1,... , Dk,... D, D to
decompose them using 2-joins into blocks B1,..., B1,..., B. not containing
an extended star cutset, 6-join or a 2-join.
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Step 6 Test whether any of the blocks BI,..., Bj,..., B, that are not
RI0 contains an unquad cycle. If so, then the signed graph G is not balanced,
otherwise G is balanced.

Remark 6.1 An algorithm to test whether a signed bipartite graph contains
an unquad cycle can be found in [4] or [6]. Hence the details of Step 6 are
omitted in this paper.

Theorem 6.2 The running time of the algorithm described in Section 3 is
bounded from above by a polynomial function of the cardinalities m and n
of the node sets Vr and VC respectively. Moreover the algorithm correctly
identifies a signed bipartite graph G as balanced or not.

Proof: The running time of each of the procedures in the algorithm has
been shown in its respective section to be bounded from above by a poly-
nomial function of m and n. Testing wether a block is R10 can be done in
constant time. The algorithms in [4] and [61, to check whether a signed bipar-
tite graph contains an unquad cycle, are bounded from above by a polynomial
function of m and n. Hence the running time of the algorithm described in
Section 3 is bounded from above by a polynomial function of m and n.

Suppose G is balanced. Clearly G cannot contain a short 3-wheel or
a 3-path configuration. All the induced subgraphs of G are balanced and
the graphs produced by Procedures 2 and 3 are balanced. Consequently, by
Lemma 4.2 and by Lemma 5.3, all the graphs in the final list A( produced
by Procedure 5 are balanced and do not contain an extended star cutset,
a 6-join, or a 2-join. Now by Theorem 2.2 every graph in the list K/ does
not contain an unquad cycle. Then Step 5 of the algorithm identifies G as
balanced.

Suppose G is not balanced. If G contains a short 3-wheel, Step 1 of the
algorithm identifies G as not balanced. Suppose G does not contain a short
3-wheel. Clearly the signed bipartite graph G contains an unquad hole of
smallest length. Now by Lemma 3.15 one of the induced subgraphs of G,
say Gi, in the list produced by Procedure 2 contains an unquad hole H*, of
smallest length, which is clean in Gi. Now Gi is one of the graphs considered
for double star decompositions by Procedure 3. By Lemma 3.23, Procedure
3 either detects a 3-path configuration or one of the undominated blocks, say
F, in the final list produced by Procedure 3 contains an unquad hole in the

33



family C(H*). In the former case clearly G is not balanced. In the latter
case Procedures 4 and 5 preserve a clean unquad hole in the graph. Now by
Lemma 4.2 and Lemma 5.3 one of the blocks, say Bj, produced by Procedure
5 is not balanced. Clearly the block Bj contains an unquad hole and hence
an unquad cycle. Hence Step 5 of the algorithm identifies G as not balanced.
This completes the proof of the theorem. 03
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